Classification of the Reducible Verma Modules over the Jacobi Algebra G2
نویسندگان
چکیده
In the present paper we study representations of Jacobi algebra. More concretely, define, analogously to case semi-simple Lie algebras, Verma modules over algebra ${\cal G}_2$. We their reducibility and give explicit construction reducible exhibiting corresponding singular vectors. Using this information a complete classification modules. than exhibit interrelation embeddings between these These are illustrated by diagrams embedding patterns so that each module appears in one such diagram.
منابع مشابه
Verma modules over the generalized Heisenberg-Virasoro algebra
For any additive subgroup G of an arbitrary field F of characteristic zero, there corresponds a generalized Heisenberg-Virasoro algebra L[G]. Given a total order of G compatible with its group structure, and any h, hI , c, cI , cLI ∈ F, a Verma module M̃(h, hI , c, cI , cLI) over L[G] is defined. In the this note, the irreducibility of Verma modules M̃(h, hI , c, cI , cLI) is completely determined.
متن کاملR – Conformal Symmetries . Ii . Geometric Quantization and Hidden Symmetries of Verma Modules over Virasoro Algebra
This article being a continuation of the first part [1] is addressed to specialists in representation theory, infinite dimensional geometry, quantum algebra, mathematical physics and informatics of interactive systems. The interrelations of the infinite dimensional geometry of the homogeneous Kähler manifold M = Diff+(S )/S (see e.g. [2] and numerous refs wherein), its quotient M1 = Diff+(S )/P...
متن کاملModules over Subalgebras of the Disk Algebra
This paper deals with the problem of characterizing submodules of C(T) over certain subalgebras of the disk algebra A. We obtain results that are analogues of the classical characterizations of subspaces of C(T) that are invariant under multiplication by z, i.e., that are submodules over A. These characterizations yield generalizations of Wermer’s maximality theorem applicable to these subalgeb...
متن کاملSemi–holonomic Verma Modules
Verma modules arise geometrically through the jets of homogeneous vector bundles. We consider in this article, the modules that arise from the semi-holonomic jets of a homogeneous vector bundle. We are particularly concerned with the case of a sphere under MMbius transformations. In this case there are immediate applications in the theory of conformally invariant diierential operators.
متن کاملUnstable modules over the Steenrod algebra revisited
A new and natural description of the category of unstable modules over the Steenrod algebra as a category of comodules over a bialgebra is given; the theory extends and unifies the work of Carlsson, Kuhn, Lannes, Miller, Schwartz, Zarati and others. Related categories of comodules are studied, which shed light upon the structure of the category of unstable modules at odd primes. In particular, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics A
سال: 2021
ISSN: ['1751-8113', '1751-8121']
DOI: https://doi.org/10.1088/1751-8121/ac2a05